MEMORANDUM

TO: Mike DeSocio, Nicole Bouchez, NYISO
FROM: Sam Newell, Bruce Tsuchida, Roger Lueken, Michael Hagerty, Tony Lee
SUBJ: Summary of GE MAPS Cases Used in Issue Track 5 Analysis
DATE: October 12, 2018

NYISO and Brattle quantified the customer cost and emissions impacts of implementing a carbon charge using the GE MAPS production simulation model for three future years (2020, 2025, and 2030).¹ GE MAPS simulations were performed for a number of scenarios with each scenario comparing a Change Case (with carbon pricing) against a Status Quo Case (without carbon pricing). There are two types of Change Cases—Simple Change Case where the only difference from the Status Quo Case is the inclusion of carbon pricing, and Dynamic Change Case that assume further dynamic market responses (such as change in new builds or retirements) to the Simple Change Case. Dynamic Change Cases were modeled only for 2025 and 2030, assuming that such market dynamics would require some time after carbon price implementation.

This memo summarizes the GE MAPS scenarios and cases used in the Issue Track 5 analysis to quantify the impacts of implementing a carbon charge.

I. Scenarios Overview

As outlined in the April 23 IPPTF presentation, our analysis began with a **CARIS-Based Scenario** (referred to as Scenario A).² Table 1 and Note: The CARIS-Based scenario for 2030 is labeled "Lo OSW / Hi Nuclear" in the summary slides.

Table 2 below (also shown in Slides 3 and 5 of the May 21 presentation) summarize the CARIS Based Scenario assumptions. Status Quo and Simple Change Cases were evaluated for years 2020, 2025, and 2030. A Dynamic Change Case in which 500 MW of solar was added to Zone G was run for year 2025 and 2030. We next analyzed multiple sensitivities around key CARIS assumptions. For 2025, Low Load and High Load sensitivities were analyzed. For 2030, a High Offshore Wind (OSW) /High Nuclear Scenario (Scenario B) and a Low OSW / Medium Nuclear

¹ In addition, NYISO and Brattle are currently evaluating a 2022 case.

 ² See Tim Duffy (2018). Consumer Impact Analysis: Proposed Assumption Framework. May 21, 2018.
 Posted at:

https://www.nyiso.com/public/webdocs/markets operations/committees/bic miwg ipptf/meeting ma terials/2018-05-21/IPPTF_IT5_0521_FOR%20POSTING.pdf

Scenario (Scenario C) were evaluated. Only the Simple Change Cases (against the Status Quo Cases) were evaluated for these sensitivities (i.e., no Dynamic Change Cases).

	Years	Load	New Renewable Resources	Nuclear Plants
CARIS-Based Scenario (Scenario A)	2020, 2025, and 2030	CARIS	CARIS, incl. 250 MW offshore wind; mostly onshore renewables; reflect latest renewable procurements	Indian Point retired in 2020/21 All Upstate nuclear in service past current license period
High Load Scenario	2025 only	CARIS + ~7 TWh		
Low Load Scenario	2025 only	CARIS - ~7 TWh		
High OSW / High Nuclear (Scenario B)	2030 only	CARIS	2,400 MW off-shore wind by 2030, displacing onshore renewables	
Low OSW / Medium Nuclear (Scenario C)	2030 only	CARIS	Same as CARIS-Based Scenario (Scenario A)	Same except Ginna and NMP1 retire in 2029

Table 1: CARIS-Based Scenario Load and Resource Assumptions

Note: The CARIS-Based scenario for 2030 is labeled "Lo OSW / Hi Nuclear" in the summary slides.

Table 2: CARIS-Based Scenario Transmission Assumptions

Transmission Updates from 2017 CARIS 1	Notes
Zero Operating Base Flow Effective Date Change in PJM/NY JOA	OBF set to 0 as of 10/31/2019
South Perry 230kV/115kV Transformer	In-Service for 2020
Dunkirk - S.Ripley Series Reactor	In-Service for 2020
Leeds Hurley SDU	In-Service for 2020
UPNY-ConEdVoltage Limit	Increase to 6250 MW; In-Service for 2021
Western NY (Empire State Line) Project	In-Service for 2022
AC Transmission Project (Generic)	In-Service for 2023

After reviewing the results for the CARIS Based Scenarios, we refined the CARIS assumptions with updated values for several key parameters, including natural gas prices, Upstate nuclear units retirement assumptions, and the level of renewable capacity, to develop a "most likely" case. These scenarios are referred to as the **Reference Scenarios** (or "Scenario D") in the results

presented to the IPPTF on September 17.³ We developed the Reference Cases for 2025 and 2030, starting from the CARIS Based Scenario (Scenario A). Table 3 and Table 4 list the Scenarios and the Cases run for each Scenario, and short descriptions of the Scenarios.

Scenarios	Description
CARIS-Based Scenario (2020, 2025, 2030)	- Formerly known as Scenario A
- Status Quo Case	- Add'l Downstate PV case: Add 500 MW of PV in G
- Simple Change Case	
 Dynamic Case: Simple Change + Add'l 	
Downstate PV (2025 and 2030)	
Low Load Scenario (2025)	 Reduce NYCA load from Reference Scenario levels by ~7 TWh
- Status Quo Case	
- Simple Change Case	
High Load Scenario (2025)	 Increase NYCA load from Reference Scenario levels by ~7 TWh
- Status Quo Case	
- Simple Change Case	
High OSW / High Nuclear Scenario (2030)	- Formerly Scenario B
- Status Quo Case	 Add 2,400 MW off-shore wind by 2030, displacing on-shore
- Simple Change Case	renewables
Low OSW / Medium Nuclear Scenario (2030)	- Formerly Scenario C
- Status Quo Case	- Ginna and NMP1 retire in 2029
- Simple Change Case	

Table 3: CARIS-Based Scenarios (Formerly Scenarios A, B, and C)

Note: The CARIS-Based scenario for 2030 is labeled "Lo OSW / Hi Nuclear" in the summary slides.

³ See Newell et al. (2018). Analysis of a New York Carbon Charge. September 17, 2018. Posted at: <u>https://www.nyiso.com/public/webdocs/markets_operations/committees/bic_miwg_ipptf/meeting_ma_terials/2018-09-</u> <u>17/2018_09_12%20Customer%20Cost%20Impacts%20of%20New%20York%20Carbon%20Charge_Fo_r%20Posting.pdf</u>

Table 4: Reference Scenarios (Formerly Scenario D)

Scenarios	Description
Reference Scenario (2025) - Status Quo Case (D2) - Simple Change Case (D3) - Dynamic Case: Simple Change + Downstate RE Shift	 Adjust Zones F-I gas prices * Downstate RE Shift case (D7s): Shift 1.3 TWh renewable generation Downstate
(D7s)	
Reference Scenario (2030)	 Adjust Zones F-I gas prices *
- Status Quo Case (D5)	 Retire NMP1, Ginna, and Fitzpatrick
- Simple Change Case (D6)	- Set all renewable capacity halfway between Base
 Dynamic Case: Simple Change + Fitzpatrick (D9f) 	and Base+Renewables Shift, including ~1,300 MW
 Dynamic Case: Simple Change + Fitzpatrick + 	of OSW
Downstate RE Shift (D10fs)	 Fitzpatrick cases: Add Fitzpatrick
 Dynamic Case: Simple Change + Fitzpatrick + 	- Downstate RE shift cases: shift 2.9 TWh renewable
Downstate RE Shift + Add'l Downstate PV (D12fspv)	generation Downstate
	- Add'l Downstate PV case: Add 500 MW of PV in G

*Gas prices for Zones F though I assumed Iroquois Zone 2 gas prices with the exception of CPV Valley, Bowline, and the generic new CC, which all assumed TETCO M-3 gas prices. A generic 10 MW CC (6,300 FLHR HHV) was added in Zone G near CPV Valley to assess the potential for dynamic changes.

II. Estimation of Dynamic Effects

Several Dynamic Change cases were developed for each Reference Case to show how a carbon charge may affect prices and customer costs. These dynamic changes include the potential for retaining Upstate nuclear past 2030, shifting renewable generation Downstate, incentivizing entry of solar PV generation, and encouraging conservation and efficiency. Table 5 and Table 6 summarize how the MAPS cases were used to develop estimates of these dynamic effects. These Dynamic Change Cases were modeled only for 2025 and 2030 (not 2020), assuming it will take time for the market to respond to carbon pricing.

	2020	2025	2030	
Nuclear Retention	n/a	n/a	Reference Simple Change + Fitz (D9f) vs. Reference Simple Change (D6)	
Renewable Shift Downstate	n/a	Reference Simple Change + RE Shift (D7s) vs. Reference Simple Change (D3)	Reference Simple Change + Fitz + RE Shift (D10fs) vs. Reference Simple Change + Fitz (D9f)	
Incremental Renewable Entry	n/a	2025 CARIS Simple Change + Add'l PV vs. 2025 CARIS Simple Change	Reference Simple Change + Fitz + RE Shift + Add'l PV (D12fspv) vs. Reference Simple Change + Fitz + RE Shift (D10fs)	
Load Elasticity	Load elasticity effect on energy prices approximated using results from 2025 Low Load Simple Change and 2025 High Load Simple Change			

Table 6: Estimation of Dynamic Effects in Sensitivity Scenarios

	Lo Load 2025	Hi Load 2025	Lo OSW / Hi Nuclear 2030 (CARIS-Based)	Hi OSW / Hi Nuclear 2030	Lo OSW / Med Nuclear 2030
Nuclear Retention	n/a	n/a	n/a	n/a	2030 CARIS Simple Change vs. 2030 Low OSW / Medium Nuclear Simple Change
Renewable Shift Downstate	2030 Hi OSW / Hi Nuclear Simple Change vs. 2030 CARIS Simple Change				
Incremental	2025 CARIS Simple Change + Add'l PV		2030 CARIS Simple Change + Add'I PV		
Renewable Entry	vs. 2025 CARIS Simple Change		vs. 2030 CARIS Simple Change		
Load Elasticity	Load elasticity effect on energy prices approximated using results from 2025 Low Load Simple Change and 2025 High Load Simple Change				

